본문 바로가기

논문읽기

읽을 논문 buffer 수정본 2025/05

정리 기준은 다음과 같다.

1. is. zero-shot? few-shot? full-shot?
2. method? SAM? GPT? CLIP? MIXED?
3. trainable? non-trainable?

 

+ 뭘 바꿔야 AD성능이 올라갈까?

- 논문을 쭉 읽으면서 느낀 부분은 시작은 항상 CLIP으로 한다. 클립으로 되는걸 SAM으로 하면 성능이 더 좋아진다. 그리고 SAM이나 CLIP으로 한걸 GPT가 이해하는 그런 방향으로 논문이 반복되는 것 같다.

 

어떻게 정리할까

1. 서베이를 자세히 읽는다. 2025년도 서베이 기준으로, 포인트는 FM으로 잡는다.

2. 서베이 기준으로 FM 논문을 찾는다.

3. 논문을 요약할 땐, 

- 이전 연구 문제점

- 개선사항

- method

- setting을 본다.

 

Survey

 

1. Beyond Academic Benchmarks: Critical Analysis and Best Practices for Visual
Industrial Anomaly Detection

 

2. A Survey on Foundation-Model-Based Industrial Defect Detection

FM method based tree

 

3. Foundation Models for Anomaly Detection: Vision and Challenges

 

논문 찾다 보니 MVTec 새로 나온거 발견함

 

The MVTec AD 2 Dataset: Advanced Scenarios
for Unsupervised Anomaly Detection

 

[읽은 논문]


Text-Guided Variational Image Generation for Industrial Anomaly Detection and Segmentation 
Towards Training-free Anomaly Detection with Vision and Language Foundation Models
Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts 
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning 
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation 
AnomalyGPT: Detecting Industrial Anomalies Using Large Vision-Language Models 
FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction 
PromptAD: Learning Prompts with only Normal Samples for Few-Shot Anomaly Detection
AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection 
VCP-CLIP: A Visual Context Prompting Model for Zero-shot Anomaly Segmentation

AA-CLIP: Enhancing Zero-shot Anomaly Detection via Anomaly-Aware CLIP

AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection

Towards Zero-Shot Anomaly Detection and Reasoning with Multimodal Large Language Models

One-for-All Few-Shot Anomaly Detection via Instance-Induced Prompt Learning ------- [x]

MuSc: Zero-Shot Industrial Anomaly Classification and Segmentation with Mutual Scoring of the Unlabeled Images 

UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection


[남은 논문]



Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection 

Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection 
Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection  
Supervised Anomaly Detection for Complex Industrial Images 
CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset
Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection 


CNC: Cross-modal Normality Constraint for Unsupervised Multi-class Anomaly Detection
Authors

Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection